أثر طريقة استخدام الوسائط الحاسوبية المتعددة في فهم المفاهيم الفيزيائية لدى طلاب المرحلة الجامعية

د. محمد سلامة الرصاعي
د. رؤوف عبد الرزاق الغالي
أساتذة مساعد
أستاذ مشارك
جامعة الحسين بن طلال - جامعة عمان العربية للدراسات العليا - جامعة آل البيت

المملص

هدفت هذه الدراسة استخمناء أثر طريقة استخدام الوسائط الحاسوبية المتعددة في فهم المفاهيم الفيزيائية في المرحلة الجامعية في الأردن، ولإجابة عن أسئلة الدراسة، تم اختيار عينة من (56) طالبة وطالب من طلاب السنة الأولى في كلية العلوم في جامعة الحسين بن طلال، توزعوا على أربع شعارات دراسية: دراسة مفاءه الميكانيكا (FMCE) حيث درست كل شعبة باستخدام الوسائط الحاسوبية المتعددة ولكن وفق أطعة أرها هي استخدام الوسائط الحاسوبية المتعددة كأدوات تكنولوجية ترافاقها المناقشة وطريقة استخدام الوسائط الحاسوبية المتعددة كأدوات تكنولوجية.

توجها المناقشة تم طريقة استخدام الوسائط الحاسوبية المتعددة كأدوات معرفية ترافاقها المناقشة وأخيراً طريقة استخدام الوسائط الحاسوبية المتعددة كأدوات معرفية لا ترافاقها المناقشة. وقد استخدمت الدراسة اختبار فهم مفاءه الميكانيكا (FMCE) كما استخدمت مادة تعليمية تكوين من خطة دراسية وفق نموذج (نتاج، لاحظ، فسر) وخطة دراسية وفق الطرق التقليدية (الوصفات الجاهزة) ودبل للمادة التدريسية.

وقد أظهرت نتائج هذه الدراسة فائقة طبالة المجموعة التي درست باستخدام الوسائط الحاسوبية المتعددة كأدوات معرفية ترافاقها المناقشة في الفهم الفيزيائي لمفاءه الميكانيكا مقابل المجموعات الأخرى.

وفي ضوء هذه النتائج أوصت الدراسة بأهمية مرافقة المناقشة لاستخدام الوسائط الحاسوبية المتعددة كأدوات معرفية في التدريس من أجل مشاركة فعالة للطالب في عملية التعلم، بالإضافة إلى توجيه الجامعات ومعاهد التعليم العالي إلى إجراء المزيد من الدراسات حول الطرق المناسبة لاستخدام الوسائط المتعددة وتكنولوجيا الحاسوب في عملية التدريس الجامعي.

المقدمة:

بعد تدريس الفيزياء في المرحلة الجامعية من المجالات الأكاديمية التي تولي التكنولوجيا والوسائط التعليمية المتعددة اهتماماً واضحاً، وذلك لقدرتها على مساهمة الفعالة على اكتساب المفاهيم العلمية المختلفة، من خلال عرض الشرائح والرسومات واستخدام المقاييس والمحاكاة للعديد من الظواهر الفيزيائية.
ويشير اصطلاح الوسائط الحاسوبية المتعددة إلى عرض المادة باستخدام الكلمات والصور معاً، ويشير إيمي ماير (2004) أن المصطلح بالكلمات هو أن تعرض المادة بشكل نفطي، أي بشكل نص مسموع أو مطبوع، أما الصور فتقدم المادة بشكل تكويني، أي باستخدام الرسوم الثانيه مثل الصور الفوتوغرافية أو الخرائط أو المخططات أو البيانات، أو باستخدام الرسوم المتحركة مثل الصور المتحركة أو أفلام الفيديو.

وفي الوقت الحاضر يكاد ينحصر نظام الوسائط المتعددة في استخدامات جهاز الحاسوب، وذلك لما يتصف به من مزايا وخصائص هامة منها (يسيني، 2002؛ بصيصوس، 2004).

1- يتيح للعلم فرصة عرض المادة بصور متعددة وبيسر وسهولة.
2- يوفر خاصية التفاعل الإيجابي بين كل من البرنامج والمتعلم وبين المتعلم أنفسهم.
3- يتيح فرصة كبرى للتجربة وإعادة العرض والتكرار، أي أنه يلام مهام التدريب.
4- يعزز الفاعليات والإثارة وينمي فرصة التعلم ويساعد على الحوار والمناقشة داخل البيئة التعليمية.
5- يلائم الكثير من الاتجاهات التربوية الحديثة، مثل التعلم من خلال الاكتشاف.

وقد مكنت هذه الخصائص من استخدام الحاسوب في مجالات جديدة في التعليم والتعلم، ليس كونه أداء تكنولوجيا فقط، تقوم بعرض المعلومات دون تفاعل معها، بل بسبب تطوير برامج حاسوبية حديثة تتيح الفرصة للمتعلم للموكلين إجراء العديد من التجارب التي يتعذر إجراؤها في المختبرات التقليدية من خلال برامج المحاكاة (Simulation)، وما أضيف إليها من حيوية (Animation)
(Animation)، كما تم استخدام الحاسوب كوسيلة مساعدة داخل مختبرات كلية العلم وغيرها، عن طريق تطوير وصلات إلكترونية (Sensors)، تظهر نتائج التجربة وتسمح على تحديد ظروف التجربة ومتغيراتها وضبطها، فضلاً عن إمكانية توضيح التغييرات التي تنطرأ في أثناء تنفيذ التجربة أعلاها، كتغير درجة الحرارة والضغط والحجم في تجارب الغازات على سبيل المثال.

وساعدت هذه التطورات على التحول من استخدام الحاسوب كأداة تكنولوجية (Tools) لعرض المعلومات، إلى أداة تكنولوجية معرفية (Cognitive Tools) تساعد المتعلم على اكتساب المعرفة بصورة إيجابية ومفهوم العالم المحيط به، كما تمكنه من استخدام هذه المعرفة بصورة وظيفية خلال مراحل حياته (Yildirim، 2005).
وقد ما يعمل على توظيف الوسائط الحاسوبية المتعددة بصورة وأنماط متعددة، إلى جانب استخدامه كأدوات تكنولوجيا، لتمنح المتعلم دوراً نشطاً من خلال مساعدته على التنهاكات في عمليات معرفية متقدمة كالتأتي والدراسة والتحليل والمقارنة وغيرها، لأنه يصعب تغيير فهم وتصور الطلبة الجامعيين لمادة الفيزياء إلا باستخدام أساليب تدريس تمكحهم دوراً نشطاً ومشاركة فاعلة في عملية التعليم (Bernhard, 2000).

لا أن بعض الباحثين برى أن استخدام الوسائط الحاسوبية المتعددة في التدريس لا يزال يركز في غالب الأحيان على عملية العرض المباشر للمادة العلمية، وما يزال الطالب هو المثقف السلي Laffey & Marlino (Reeves, 1997).

وأكد (Bates, 2003) أن من أسباب فشل تكنولوجيا التعليم غالبًا هو أن المدرسين يحملون معهم أساليب التدريس التقليدية إلى الوسائط الجديدة، بدلاً من أن يطوروا أشكالاً جديدة تستمر الخصائص الفريدة لوسائط تكنولوجيا التعليم.

لذلك بدأ المختصون بطرق التدريس وتكنولوجيا التعليم، التساؤل حول كيفية توظيف التكنولوجيا والوسائط المتعددة في الحصول على المعرفة. بطرق تراعي دور المتعلم، وتعزز تفاعلاته الإيجابي النشط في أثناء عملية التعلم. وتتطلب التوجهات التي تتمركز حول الفهم من فهم كيفية عمل العمل الإنساني ومن سؤال “كيف يمكننا تكييف الوسائط المتعددة لدعم الفهم الإنساني؟ وبالتالي يتم التركيز على استخدام تقنية الوسائط المتعددة كعنصر مساعد للمعرفة الإنسانية (إي ماير، 2004).

لقد جاء تطور استخدامات التكنولوجيا الحديثة منسجماً مع النظريات التربوية الحديثة مثل النظرية البنائية التي ساعدت على وضع نماذج وإستراتيجيات تعليمية تساعد المدرس الجامعي على تنفيذ الأدوار المنطوية به فاعلية. كما تؤثر هذه النماذج في المجال التدريبي فيما يسمى “التعرف على الفهم” والمهمة الإيجابية والمسؤولية الذاتية من خلال أوقات رئيسية ت/socket له، وهذه النماذج البنائية تتساوى مع التوجهات الحديثة في عصر ثورة المعلومات وتكنولوجيا.

ومن الإستراتيجيات التربوية التي تستند للنظرية البنائية ويمكن من خلالها توظيف الحاسوب Predict - Observe - Explain (White and Gunstone) (POE) (Explain - لاحظ - فصل) التي بدأ استخدامها من قبل كل من وات وجنستون 2008م.
في العام 1992 كاستراتيجية فعالة لتقصي الأفكار التي يحملها الطلبة وتشجيعهم على مناقشة هذه الأفكار، وتشمل هذه الاستراتيجية على وضع الفرضيات، وتثبيط الأدلة على صحة هذه الفرضيات، وجمع البيانات والمعلومات ذات الصلة. وأخيراً مناقشة النتائج، علمًا بأن بدايات تطوير هذه الاستراتيجية كان في جامعة بيتشرغ (Pittsburgh University) (Kearney et al., 2001) (Demonstrate - Observe - Explain) (عرض- ملاحظة- تفسير).

وتأتي هذه الدراسة لاختبار مدى فاعلية هذه الاستراتيجية في فهم طلاب المرحلة الجامعية لبعض المفاهيم الفيزيائية باستخدام الوسائط الحاسوبية المتعددة.

مشكلة الدراسة:

تشير نتائج البحوث التربوية العلمية إلى أن معظم الطلبة الجامعيين لا يحقق لديهم فهماً وظيفياً لمادة الفيزياء التي يدرسونها بأسلوب تقليدي، رغم التطوير والتحديث المستمر للطرق التقليدية في تدريس العلوم بشكل عام والفيزياء بشكل خاص، (Hein & Irvien, 1999; الفاعلي). وقد حاولت كثير من الدراسات تعرف أثر الأنشطة العلمية والمختبرات باستخدام التكنولوجيا في أقسام الفيزياء، فوجدت أن الطلبة يحاولون رؤية وتحديد النتائج الموثوقة من النشاط، ولا يرون ارتباطات عقلية بين معرفتهم السابقة والنشاط العملي داخل المختبر (Hart, Mulhall, Berry & Gunstone, 2000).

هذا الواقع يظهر حجم المشكلة التي تواجه تدريس الفيزياء في المرحلة الجامعية حتى في حال استخدام الحاسوب والوسائط المتعددة كأدوات تكنولوجية يستفيد منها الطلاب لإظهار قيم الكميات. (Bernhard, 2003).

لذلك كان الهدف من هذه الدراسة هو التعرف على الطريقة المناسبة لاستخدام الوسائط الحاسوبية المتعددة داخل مختبرات الفيزياء الجامعية، خصوصاً وأن العديد من الجامعات بدأت تتجه نحو حوضة التدريس فيها بالإضافة إلى ربط المختبرات المختلفة بجهزة الحاسوب في كليات العلوم وغيرها. كما أنهم من الأهمية بمكان أن يواكب استخدام التكنولوجيا والوسائل المتعددة في التعليم الجامعي استقاء طرق و استراتيجيات تعلمية تعزز عمليات الفهم والإبداع، وتوضح دور الطالب والدرس وجهازة الحاسوب، وطبيعة العلاقة التفاعلية بين هذه الطرق داخل المختبر أو قاعة الدرس.
وحيث إن المقاهيم العلمية هي الأساس في فهم العلم وتطوره، وأن طرق التعليم والتعلم
تؤثر بدرجة كبيرة في مستوى فهم التلاميذ للمفاهيم العلمية، لذلك هدفت هذه الدراسة لإجابة عن
السؤال الرئيس التالي: ما أثر طريقة استخدام الوسائط الحاسوبية المتعددة في فهم طلاب
المرحلة الجامعية لبعض مفاهيم الميكانيكا؟ ويتلاو من هذا السؤال الرئيسي الآتي:
1- ما أثر استخدام الوسائط المتعددة الحاسوبية كأدوات تكنولوجية ترافقتها المناقشة في فهم طلاب
المرحلة الجامعية لبعض مفاهيم الميكانيكا؟
2- ما أثر استخدام الوسائط المتعددة الحاسوبية كأدوات تكنولوجية ترافقتها المناقشة في فهم طلاب
المرحلة الجامعية لبعض مفاهيم الميكانيكا؟
3- ما أثر استخدام الوسائط المتعددة الحاسوبية كأدوات معرفية ترافقتها المناقشة في فهم طلاب
المرحلة الجامعية لبعض مفاهيم الميكانيكا؟
4- ما أثر استخدام الوسائط المتعددة الحاسوبية كأدوات معرفية ترافقتها المناقشة في فهم طلاب
المرحلة الجامعية لبعض مفاهيم الميكانيكا؟

أهمية الدراسة:

تمثل أهمية هذه الدراسة فيما يلي:
1- تناولت هذه الدراسة موضوعاً حيوياً يتعلق باستخدام التكنولوجيا الحديثة في التدريس الجامعي
ب무ادل جيدة، تكسبها نتائج نوعية تعمل على تحقيق أهداف التربية الحديثة.
2- تلقت الانتباه المستمر على مختلف جوانبها إلى أن لا تكتفي بإدخال التكنولوجيا والوسائط
الحاسوبية المتعددة من أجل الجانب التقني فيها فقط، بل أن تعمل هذه الوسائل على تكييف
المؤهلات الدراسية لتوافق مع هذه التقنية بغية توظيفها بطريقة تعود على العملية التعليمية بصورة
伊جابية.
3- احتوت هذه الدراسة على مادة منهجية لمفاهيم الميكانيكا صممت وفق نظرية بناء المعرفة ومن
خلال موربيد (نبا، انظر، فسر) حيث تكتسب هذه المفاهيم أهمية بالغة في تدريس الفيزياء وفي
مراحل دراسية مختلفة كما يمكن الاستفادة منها في تدريس مادة الفيزياء العامة العملية لطلبة
السنة الأولى في كلية العلوم والهندسة، حيث يواجه طلبة المرحلة الجامعية صعوبة في دراستها
وعلما.
مصطلحات الدراسة:

الموانئ الحاسوبية المتعددة كأدوات تكنولوجية في تدريس الفيزياء العملية: تنفيذ التجريبية العلمية داخل مختبر الفيزياء بموافقة الوسائط المتعددة الحاسوبية ومن خلال خطوات ووصفات تفصيلية جاهزة (Cook Book) حيث يقدم البرنامج الحاسوبي قيم الكميات المراد قياسها أثناء تنفيذ التجريبية (الزمن الإزاحة، السرعة، التسارع).

الوسائط الحاسوبية المتعددة كأدوات متعدرة في تدريس الفيزياء العملية: مجموعة من المهام العملية والتجارب داخل مختبر الفيزياء بموافقة الوسائط المتعددة الحاسوبية ومن خلال تطبيق نموذج (نماذج، لاحظ، فسر)، يقدم فيه الطالب في البداية نموذج مكتوبًا لتساؤل أو مهمة ما، ثم يقوم من خلال جهاز الحاسوب المرتبط بالتجربة بعملية الملاحظة للبيانات والرسوم التوضيحية الموقعة، يعقب ذلك تقديم تفسير علمي للنتائج التي أظهرها وذلك يتضمن له بناء تفسيرات واتصالات بين المفاهيم المقاسة والتحكم بالمتغيرات وربطها ودراسة العلاقة بينها بشكل مباشر.

المناقشة: التفاعل النظري الإيجابي، بين المعلم والطالب وبين الطلبة أنفسهم داخل المجموعة الواحدة وفي أثناء تنفيذ التجريبية داخل مختبر الفيزياء، ويتهدف ذلك من خلال طرح الأسئلة والحوار وتقديم المعلومات سواءً من المعلم أم الطالب.

فهم مفاهيم الميكانيكا: القدرة على وصف حركة الأجسام وتفسيرها باستخدام الكلمات أو الرسوم البيانية وتوسيع التغيرات في قيم (السرعة، الإزاحة، التسارع، القوة، الطاقة المتحركة، طاقة الوضع، الطاقة الميكانيكية، الزخم الخطي)، وكذلك القدرة على إدراك العلاقة بين هذه المفاهيم وكيفية ارتباطها بعضها البعض، وقياس هذا الفهم باستخدام اختبار (FMCE) (Force and Motion Concept Evaluation) وبيما يتناسب مع هدف البحث.

حدود الدراسة ومتاحتها:

1. اقتصرت هذه الدراسة على عدد من طلاب السنة الأولى (بنين وبنات) في كلية العلوم من تخصصات (الفيزياء والرياضيات والكيمياء) في جامعة الحسين بن طلال، حيث تعد مادة الفيزياء العامة العملية (الميكانيكا)، مبتولاً إجبارياً ضمن خططهم الدراسية.

2. المفاهيم التي تم دراستها هي مفاهيم (الميكانيكا) والمتضمنة في مقرر الفيزياء العامة العملية (1).
استخدمت في هذه الدراسة برمجيات الحاسوب المزدوجة للتجارب العملية داخل مختبر الميكانيكا، وهي من تصميم شركة LEYBOLD الألمانية (Cassy Software) وشركة PHEWY الألمانية (Measure software) والتي تقدم عرضًا للبيانات ونتائج التجربة التي ينفذها الطالب فعلًا داخل مختبر الفيزياء، ويكون هذا العرض على شكل جداول ورسوم بيانية وصور رقمية.

الدراسات السابقة الممتلئة بمواضيع البحث:

أجريت عدة دراسات في هذا المجال منها دراسة هيك (Hake, 1997) التي هدفت إلى اختبار أثر الأساليب التي تميز تنفيذ الطلاب دوراً نشطاً من خلال مختبر الفيزياء المحوس. استخدمت اختبار مقياس الفئة الأمريكية (Active FCI-Test) لاختبار فهم طلاب في مجموعة من الجامعات في الولايات المتحدة.

درة ببعضهم بأساليب تقليدية والبعض الآخر بأساليب المشاركة النشطة من خلال استخدام الحاسوب بسياق معياري. فقد أن الصفوف التي درست بأساليب تلقي طلاب داور فعلاً حصلت على نتائج مميزة في فهم المفاهيم العلمية مقابل الصفوف التقليدية.

كما أجري ريفيز وولفي ومارلينو (Reeves & Laffey & Marlino, 1997) دراسة حول استخدام الوسائط المتعددة كأدوات معرفية في عملية التدريس، حيث تم تدريس 42 طالب أكاديمية الطيران الأمريكية (freshmen cadets) من مجتمعين: الأول تجريبي درست باستخدام الأساليب التكنولوجيا والموضوع المتعدد كأدوات معرفية، والآخر تجريبي درست بالطريقة التقليدية، وقد بينت هذه الدراسة وجود فروق ذات دلالة إحصائية لصالح المجموعة التجريبية في فهم بعض المفاهيم الهندسية ومهارات التفكير العليا.

ويقاس ذلك أجرى ريفيز وزملاؤه (Redish & Saul & Steinberg, 1997) دراسة بهدف تقصي أثر مختبر الفيزياء المحوس في قدرة الطلبة على حل المشكلات والتحكم بوقت العمل، وذلك عبر الدراسة من مجموعة من طلبة كلية الهندسة ضمن مساق الفيزياء العامة تم تقسيمهم إلى مجموعتين: تجريبية درست موضوعات السرعة اللحظية وقانون نيوتن الثالث من خلال مختبر الفيزياء المحوس، أما المجموعة الضابطة فدرست الموضوعات نفسها ولكن بالأسلوب الشفوي التقليدي، وتمت عملية التقييم وفق منهجية الاختبار القلبي والبعدي.
وWiFi استخدام اختبارات عدة (اختبار اختيار من متعدد لفهم السرعة، اختبار فهم القوة وFCI اختبار الإجابية المفتوحة) ويتّبّع وجود فاعلية واضحة لفهم الفيزياء المحاسب في تشكيل وبناء مفهوم السرعة مقارنة بالمجموعة الضابطة.

وفي دراسة ثورتن وسوكولوف (Thornton & Sokoloff, 1998) تم تدريس أكثر من 1200 طالب جامعي في خمس جامعات مختلفة موضوعات الميكانيكا، ثم تقسيم العينة إلى ثلاث مجموعات، درست المجموعة الأولى بالطريقة التقليدية، في حين تم تدريس المجموعة الثانية والثالثة داخل مختبر الميكانيكا بأسلوب الحاسوب كأداة لتفسير الفيزياء، إلا أن أفراد المجموعة الثانية تم تدريسهم بهذا الأساليب للمرة الأولى أما طلاب المجموعة الثالثة فقد تلقوا دراسة في مختبرات الفيزياء بأسلوب الحاسوب كأداة لتفسير الفيزياء في جامعتي أورينغ وتايت (of Oregon & Tufts University) كانت نسبة التحسن في فهم مفاهيم الميكانيكا قد تؤدي إلى الأداء الفعلي للمجموعات كما يلي (المجموعة الأولى: 30%، المجموعة الثانية: 75%، المجموعة الثالثة: 93%)،

كما أجرت دراسة سفيك (Svec, 1999) على تعرف فعالية المختبر المحاسب (MBL) في القدرة على التغيير المفاهيمي، وكذلك تعرف قدرة الطلبة في تفسير الرسوم البيانية وفي تعلم أفضل لمفاهيم الميكانيكا، وتوفر هذا الفهم في حل مسائل لا تحتوي رسوماً بيانية. فكانت المجموعة الأولى (التجريبية) من طلبة ثانوية الفيزيائيون لتلخيص المرحلة العملية، وقد تم التدريس لهم بأسلوب المختبر المحاسب، أما المجموعة الثانية (الضابطة) فكانت من شغيلة مادة الفيزياء العامة ودروس باستخدام المختبر التقليدي. وقد بنيت نتائج الدراسة بعد تعرض الطلبة لاختبار تفسير الرسوم البيانية والمحتوى المفاهيمي تفوق طلبة المجموعة التجريبية التي درست بأسلوب المختبر المحاسب (MBL) مقابل مجموعة الذين درسوا بأسلوب المختبر التقليدي.

ومن الدراسات التي اتبعت منهج البحث النوعي دراسة رسل وأخرون (Russell et al., 1999) حيث أُجريت على كيفية مساعدة_Another المختبر المحاسب المستندة إلى النظرية البيانية في عملية بناء الفهم الفيزيائي، فتم تطبيق الدراسة على عينة من طلبة الصف الحادي عشر في مادة الفيزياء ومن خلال تنفيذ سبعة أنشطة ترتبط بعلم الميكانيكا تم إعادةها وفق نموذج (تي- با لاحظ فض) ثم قام الباحث بجمع النتائج من خلال تسجيل استخدام أشرطة الفيديو التي راقبت خلالها عمل الطلبة والمعلم خلال العمل في المختبر، كما أن الطلبة قاموا بإرسال
البيانات والرسومات باستخدام جهاز الحاسوب وعمل تقارير علمية بالنتائج التي توصلوا بها. حيث توصلت الدراسة إلى أن الطريقة الأكثر فاعلية في تجهيز وبناء الفهم الفيزيائي ربما تأتي من ربط تكنولوجيا مختبر الفيزياء المحوسب ذات القدرة والمرونة عالية، باستراتيجيات التدريس المستندة إلى النظرية البانثينة في التعلم أي استخدام التكنولوجيا كأدوات معرفية. وفي دراسة بيرنارد (Bernhard, 2001) تم استقصاء أثر طريقة تدريس مفاهيم الميكانيكا وفق سياق معرفي باستخدام المختبر المحوسب على الاحتفاظ بالفهم الفيزيائي لمفاهيم الميكانيكا لفترات طويلة، حيث اختار الباحث طبقة شعب الهندسة المدنية وطلبة تخصص معلمي العلوم والرياضيات. وبعد دراسة الطالبة مادة الميكانيكا ضمن ثلاث شعب إحداهما درست مادة الميكانيكا بالطريقة التقليدية، بينما تم تدريس شعب الدراسة الميكانيكا ومعلمي العلوم باستخدام الحاسوب كأداة معرفية. استخدم الباحث اختباري الفهم الفيزيائي لمفاهيم الميكانيكا (FCI, FMCE) كاختبارات قليلة وبدنية، وتتبع أن الأساليب الدراسية التي تمنح الطالب مشاركة نشطة في عملية التعلم باستخدام الحاسوب كأداة معرفية كان لها أثر ذو دالة إحصائية على الاحتفاظ بالفهم الفيزيائي لمفاهيم الميكانيكا، حيث كانت نسبة التحسن في عملية الفهم قياسا للاحتمال القليلة لشعبة معلمي العلوم 42% وطلبة الهندسة المدنية 45% بينما الطالب الذي تعلموا بالطريقة التقليدية كانت النسبة 16%.

وقد استقصى كيرني (Kearney et al., 2001) دور نموذج (بتباً، لاحظ، فسر) داخل الفرصة الصافية المحوسبة بالإضافة لعرض بعض مقاطع فيديو حول الظواهر والمفاهيم التي سيدرسها الطلبة، أي استخدام الحاسوب والوسائط المتعددة كأدوات معرفية لفهم مفاهيم القوة والحركة، حيث تم تدريس هذه المفاهيم شعبتين دراسيتين في إحدى المدارس الثانوية في سييني باستراليا من طبقة الصف الثاني عشر والأسولوب نفسه، تكونت الفرصة الأولى من (18) طالبة تم تدريسهم من قبل معلمة، أم الشعبة الثانية فتكونت من (26) طالب أشرف على عملية تدريسهم أحد معلمي الفيزياء في المدرسة، وقد تم اختيار هاتين الشعبتين بسبب معرفتهم الكافية بإسلوب التعلم من خلال الحاسوب وفي المجموعات ووفق نموذج (بتباً، لاحظ، فسر) واستخدمت في هذه الدراسة (16) مهمة حول موضوعي القوة والحركة، وفي نهاية الدراسة تم جمع المعلومات من خلال عدة أدوات (إجراءات مقابلة مع بعض أفراد العينة، استبانة، ملاحظة مباشرة للفصل أثناء العمل)، وقد تبين أن هناك اندماج ومشاركة معرفية فعالة من قبل الطلبة في أثناء تنفيذ مهامهم
وفق نموذج (تشابه، لاحظ، فسر)، كما عمل هذا النموذج على تعزيز عملية المناقشة والتفكير الناقد وتنمية مهارات الملاحظة والتنبؤ والتفسير والكتابة العلمية، وقد أشار الطلبة إلى متعة العمل وفق هذا السياق المنهاجي الذي يمثل العالم الحقيقي.

وفي دراسة رويك (2002) في كلية مولينترن للفنون الحرة في الولايات المتحدة الأمريكية، تم تطبيق دراسة بهدف التعرف على فعالية مختبر الطاقة المحور في دروس مادة الميكانيكا ضمن استراتيجيتين: الأولى الطريقة التقليدية (Cook Book) حيث تم تنفيذ مجموعة من المهام ضمن قائمة من الخطوات التفصيلية دون تفاعل مع جهاز الحاسب (آداء تكنولوجية)

والطريقة الثانية هي طريقة المشاركة النشطة والتفاعل مع جهاز الحاسب (آداء معرفية).

استخدمت المجموعة ذات التكنولوجيا والتجليزات المخبرية لمدة مدة أسبوع، وقد رافق العمل في المختبر تنفيذ مجموعة من الواجبات البيتية (Homework) من قبل المجموعة، وفي الفصل الدراسي التالي نفذت الدراسة على مجموعتين آخرين واستخدام الاستراتيجيات السابقة ولكن دون التكليف بعمل واجبات بيتية، أي أن الدراسة تكمن من مرسلتين، وتكوين عينة الدراسة من اثنين وخمسين طالبًا (25 في المرحلة الأولى و25 في المرحلة الثانية). استخدمت الدراسة مقياس مفهوم القوة (Force concept inventory, FCI) كاختبار قليلي وعدي لكلا المراحلتين لقياس الفهم الفيزيائي لمفهوم القوة، كما تم قياس مدى رضا الطلبة إحساسهم بالفائدة من خلال استبانة أدت لهذا الغرض، وقد خرجت الدراسة بأنه لا يوجد فرق ذات دلالة إحصائية في فهم المفاهيم الفيزيائية بين المجموعتين التجريبيتين، كما لم يكن للواجبات البيتية أثر ذو دلالة إحصائية على أداء طلبة المجموعتين على اختبار الفهم الفيزيائي لمفهوم القوة، إلا أنه كان هناك فروق بسيطة في الرضا والإحساس بالفائدة والفعالية لصالح المجموعة التي درست بطريقة التقليدية.

أما دراسة بيرنارد (2003) فقد هدفت إلى تعرف السبب الحقيقي وراء اكتساب الطلبة لفهم واضح لمفاهيم الميكانيكا، أي هل يعود هذا الفهم للتكنولوجيا المستخدمة أم للمنهجية والسياق العلمي المتبقي في أثناء تعلم هذه المفاهيم؟ لذا عمد إلى تنفيذ المختبر المحور بثلاث طرق لتدريب مادة الميكانيكا في جامعة Linkoping University، كما أُعتبر الاختبار المفاهيمي (Force concept inventory, FCI) والاختبار المفاهيمي لقوة الحركة (Force concept inventory, FCI) وكلاختبارات قليلة وعديدة في تدريس الشعبة الأولى باستخدام المختبر المحور مع FMCE
إعطاء دور نشط للطلبة واستخدام دورة (توقع - لاحظ - فسر) أي توظيف الحاسوب كأداة معرفية، في حين درست الشعبان الثانية والثالثة باستخدام المختبر المحوسب كأداة تكنولوجية حيث درست الشعبة الثانية موضوع تسرعة والتسارع، أما المجموعة الثالثة درست موضوع حفظ الزخم. وبناء نتائج الدراسة تميز طلبة الشعبة الأولى، في حين حقق طلبة الشعبتين الثانية والثالثة نتائج متواضعة على الاختبارات السابقة.

وفي دراسة أخرى (Bernhard, 2003b) هدفت إلى تحليل توجهات الطلبة وинтерPRETATION، وأسلوب مشاركتهم في مختبرات الفيزياء المحوسبة، وكذلك الدور المناسب للعلم في هذه البيئة، حيث استخدم الطلبة جميعهم تقنيات ومهارات متنوعة، إلا أنه تم تنفيذ هذه المهام بطرق مختلفة من خلال ثلاث مجموعات من طلبة السنة الأولى في مختبرات الميكانيك.

البحث المروضة (توجه مفاهيمي)، أما المجموعة الثانية فبدأت إلى إعداد تقرير علمي بنتائج التجربة وإخراجه بصورة جيدة من خلال العمل وتفعيل مهارات حذاء بخطة، في حين أن المجموعة الثالثة عمل الطلبة فيها على تنفيذ مهامهم بأقل جهد ممكن واستخدام استراتيجيات لا تعمل على ربط المفاهيم والصور الذهنية للطلبة بالظاهرة العلمية أو المفهوم الذي تقوم عليه التوجيه العلمي، كما تم تسجيل وقائع العمل في المختبر باستخدام تصوير الفيديو، وقد بيئة هذه الدراسة أن استخدام المنهج المفاهيمي في تدريس أنظمة المختبر المحوسبي يؤدي إلى تحقيق تقدير في معي، وذلك من خلال قيام المدرس بتسبيح المهام ضمن أسئلة مفتوحة الإجابة باستخدام نموذج (توقع، لاحظ، فسر) حيث تقدم التكنولوجيا تغذية رابحة مباشرة لمساعدة الطالب على اكتساب أخطاء المفاهيم. كما أكدت الدراسة أن التكنولوجيا تقدم مجموعة من المفاهيم المحددة للمفهوم (البيانات، الرسم البياني، ...) عدا أنها مصمم يوضح ويركز على التفريق بين المفاهيم المختلفة. ومن نتائج هذه الدراسة أن اختلاف طريقة التدريس يؤدي إلى اختلاف أنماط التواصل والمناقشة بين أفراد المجموعة الواحدة داخل المختبر، وأن المدرس دورًا هاماً في استراتيجية التدريس باستخدام الحاسوب (البيئة العلمية)، حيث يؤثر المدرس بطريقة هامة غير مباشرة من خلال بناء مجموعة المهام وتسهيلها التي على الطلاب تنفيذها في أثناء العمل في المختبر ووجود الحاسوب، وكذلك تحديد الأساليب السهل في استخدام...
الحاسب والتقنية، أما الصورة المباشرة لعمل المدرس في هذه البيئة التعليمية فهي عملية
التدخل المناسب في أثناء عمل الطلبة في المختبر.
أما دراسة مورينو وفالديز (2005) التي هدفت إلى التعرف على أثر
استخدام الوسائط المتعددة كأدوات تكنولوجية معرفية مقابل استخدامهما كأدوات تكنولوجية في
عملية حدوث ظاهرة البرق، فلم تخرج بفروق ذات دلالة إحصائية بين المجموعتين التجريبية
والتي درست باستخدام الحاسب كأداة معرفية يقوم الطلبة خلالها بتقديم مجموعة من الإطارات
بتسجل منطقي لمراحل حدوث ظاهرة البرق والمجموعة الضابطة التي يقوم جهاز الحاسوب
بعرض هذه الإطارات متسلسلة دون أي تفاعل بين طالب وجهاز الحاسوب، وقد تم تطبيق هذه
الدراسة على عينة مكونة من ثلاثة وخمسين طالباً من طلبة المرحلة الجامعية الأولى في جامعة
ساوثيلسترن في الولايات المتحدة الأمريكية.
وفي ضوء مراجعة الدراسات السابقة يمكن رصد الملاحظات التالية:
1- قلة الدراسات التي هدفت إلى المقارنة بين استراتيجيات مختلفة في تدريس الفيزياء
باستخدام الوسائط الحاسوبية المتعددة، حيث يتم المقارنة غالباً بين طريقة استخدام الحاسوب في
دراسة القيصري مقابل التدريس الاعتيادي دون الحاسب بدراسة (Moreno, 2005)،
ودراسة (Bernhard, 2003b) ودراسة (Royuk, 2002)، وهذه
دراسات حديثة تنجز أن الابتسا في مجال تدريس الفيزياء تكنولوجيا المعلومات بدأت
تحول في السنوات القليلة الماضية نحو استثمار أنماط واستراتيجيات تعليمية حديثة
لتدريس مفاهيم الفيزياء، من خلال توظيف التكنولوجيا والوسائط المتعددة، حيث تسود هذه
ال استراتيجيات نحو نظريات تعلم تمنح الطلبة دوراً نشطاً ومساحة واسعة لممارسة مهارات
التفكير والتحليل والقدرة على التفكير بותו مستويات.
2- قلة الدراسات التي حاولت تحديد الدور المناسب للمعلم أو المدرس الجامعي في البيئة
التعليمية المحوسية (المختبرات الجامعية) من خلال المناقشة، باستثناء دراسة
التي بنت أن للمعلم أدواراً مباشرة، مثل التوجيه والتدخل المناسب في أثناء
العمل، وأخرى غير مباشرة كإعداد وتضمين المهارات وتحديد طريقة الاستخدام المناسبة للتكنولوجيا
في أثناء تدريس الفيزياء العملية باستخدام الحاسب.

169
- لم تتفق جميع الدراسات السابقة على فعالية استخدام الوسائط المتعددة والحساسات كأدوات معرفية على مستوى الفهم الفيزيائي لمفاهيم الميكانيكا، فقد بينت دراسة (Moreno, 2005) ودراسة (Royuk, 2002) عدم وجود فروق ذات دالّة إحصائية بين استخدام الحاسوب والوسائط المتعددة كأدوات معرفية في تدريس الفيزياء مقابل استخدامها كأدوات تكنولوجية في مستوى فهم مفاهيم الفيزياء بينما أظهرت دراسة بيرنارد (Bernhard, 2003a; Bernhard, 2003b) وجود فروق دالة بين الطريقتين.

عنية الدراسة:
تألفت عنية الدراسة من ستة خمسين طالبة وطالبًا من طلاب السنة الأولى في كلية العلوم في جامعة الحسين بن طلال في محافظة مكة بجنوب المملكة الأردنية الهاشمية، والتي جُهّزت مختبراتها بتداعيات وأدوات يمكن ربطها بأجهزة الحاسوب عند إجراء التجربة العلمية، تم اختيار هذه العينة بصورة عشوائية، حيث نوزع أفرادها على أربع شعوب دراسية لفماداة الفيزياء العامة العملية (1) (الميكانيكا)، وقد جرى التعيين العشوائي للشعب الأربع على المعالجات التجريبيّة كما هو موضح في الجدول (1).

جدول (1) أعداد الطلاب والمعالجة التجريبيّة لكل مجموعة

<table>
<thead>
<tr>
<th>المعالجة التجريبيّة</th>
<th>المجموعة الأولى</th>
<th>المجموعة الثانية</th>
<th>المجموعة الثالثة</th>
<th>المجموعة الرابعة</th>
</tr>
</thead>
<tbody>
<tr>
<td>استخدام الوسائط الحاسوبية المتعددة كأدوات تكنولوجية لا تؤثر ك على المناقشة</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

أداة الدراسة:

انحصرت أداة الدراسة الحالية في اختيار الفهم الفيزيائي لمفاهيم الميكانيكا (القوة والحركة) وتسهيل الرجوع إلى الاختبار العالمي Force And Motion (FMCE) (Thornton & Sokoloff, 1998) وهو من إعداد ثورنتون وسووكولوف (Concept Evaluation FMCE) ويتكون في صورته الأصلية من (43) مفردة من نوع اختيار من متعدد، ويهدف اختيار
أ. التحليل الإحصائي لمفردات اختبار الفهم الفيزيائي

تم حساب الصعوبة والتمييز لفرفارات الاختبار كونه لم يطبق سابقاً على طلبة أردنيين، وذلك من خلال تطبيق الصورة المعدلة على عينة استطلائية من طلبة السنة الأولى في كلية العلوم، والذين أنهوا مساق الفيزياء العامة خلال الفصل السابق للفصل الذي تم فيه تطبيق هذه الدراسة وكان عددهم (42) طالباً وطالبة، ولم يتم حذف أي فقرة من فقرات الاختبار وفقاً لمعاملا الصعوبة والتمييز حيث تراوحت معاملا الصعوبة بين (0.24 - 0.79) ومعاملا التمييز (0.38 - 0.92) وهي معاملا مقبولة لتمل هذا النوع من الدراسات.

المادة التعليمية:

تكونت المادة التعليمية بما يلغي:

1- دليل المادة النظرية.
2- خطة العمل (Work sheet) وفق دورة (تينياً، لاحظ، فسر).
3- خطة العمل وفق طريقة الوصفات الجاهزة (Cook Book).

أولاً: دليل المادة النظرية:

تم إعداد دليل المادة النظرية يحتوي على المادة العلمية للتجارب التي تم تنفيذها داخل المختبر وتوضيح أهدافها بعد القيام بعمل تحليل محتوى للمفاهيم الواردة في المادة العلمية المقررة في مختبر الفيزياء العامة العلمية (1)، ولضمان تيات تحليل المحتوى للمادة العلمية تم إجراء تحليل للمادة التعليمية من قبل الباحث الأول بشكل منفرد ثم أعد الباحث الثالث إجراء تحليل للمادة التعليمية حيث تبين وجود درجة مناسبة من الثبات بين التحليلين.

حتى دليل المادة النظرية على ثلاث تجارب:

(One –dimensional motion - الحركة في بعد واحد)
2- الطاقة الميكانيكية (Mechanical energy)

3- حفظ الزخم الخطي (Conservation of linear momentum)

تم عرض هذا الدليل على خمسة من أعضاء لجنة التحكيم سبق لهم تدريس مادة الفيزياء العامة في جامعة الحسين بن طلال، حيث اقترحوا مجموعة من التعديلات عليها، أخذ بها كاملة:

أ- إعادة للصياغة اللغوية. ب- حذف بعض الفقرات. ج- إعادة ترميز بعض الكلمات.

الفيزيائية.

ثانياً: خطة العمل وفق دورة (تنبأ، لاحظ، فسر)

تم إعداد خطة العمل وفق إستراتيجية (تنبأ، لاحظ، فسر) وتكونت من اثنتي عشرة مهمة ضمن مادة الميكانيكا، بحيث تكون المهمة على شكل سؤال يتطلب الإجابة على نشرة عملي للتجربة العلمية، وقبل ذلك يقوم الطالب بتوقع وتنبأ مكتب للإجابة الصحيحة باستخدام الكلمات أو الرسم البياني أو كلاهما معاً، ثم يشرح في نشرة التجربة وملاحظة النتائج عبر شاشة جهاز الحاسوب المرافق للتجربة، ويقوم مرة أخرى بتسجيل هذه الملاحظات وطباعة البيانات والرسوم البيانية التي أظهرها جهاز الحاسوب كنتائج للعمل المنفذ.

في المرحلة النهائية للعمل وفق إستراتيجية (تنبأ، لاحظ، فسر) يقدم الطالب تفسيراً علمياً مكتوباً للنتائج التي حصل عليها بشكل فحصي، وبعد الانتهاء من تنفيذ المهمة من خلال المرافق الثلاث التنبأ والملاحظة والتفسير، يجب الطالب عن مجموعة من الأسئلة بحيث يزج ما توصل إليه من فهم للظاهرة بما هو في واقع الحياة العملية، والقصد من ذلك هو تثبيت الفهم السليم لهذه الظواهر الفيزيائية.

صدق خطة العمل:

للتأكد من صدق خطة العمل، تم عرض هذه الخطة على لجنة من المحكرين تكونت من أعضاء الهيئة التدريسية في قسم الفيزياء في جامعة الحسين بن طلال، وغيرهم من حملة الدكتوراة في أساليب تدريس العلوم، وطلبة الدراسات العليا في مجال أساليب العلوم، بالإضافة لعدد من طلبة قسم الفيزياء لمرحلة البكالوريوس في جامعة الحسين، أخذت ملاحظات لجنة التحكيم بين الاعتبار وأجري بعض التعديلات على خطه العمل ضمن المحاور التي تواجه حولها ملاحظات اللجنة. وقد مكنت هذه الخطة توظيف الوسائط الحاسوبية المتعددة كأدوات معرفية داخل مختبر الفيزياء، حيث تم إعداد صورتين من هذه الخطة، الصورة الأولى ينفذها طلاب
المجموعة الرابعة وفق طريقة استخدام الوسائط الحاسوبية المتعددة كأدوات معرفية تراقبها عملية المناقشة بعد إضافة مجموعة من الأسئلة التي يطرحها المدرس الجامعي على مجموعات العمل عند تنفيذ أي مهمة من مهام هذه الخطة، والصورة الثانية يُبديها طلاب المجموعة الثالثة وفق طريقة استخدام الوسائط الحاسوبية المتعددة كأدوات معرفية لا تراقبها عملية المناقشة.

ثالثاً : خطة العمل وفق طريقة الوصفات الجاهزة

أعدت هذه الخطة وفق الطريقة التقليدية لتنفيذ التجربة داخل مخبر الفيزياء حيث يقوم الطالب بتنفيذ سلسلة من الخطوات المكتوبة مسبقاً، لذلك تسمى هذه الطرقية بطريقة الوصفات الجاهزة (Cook Book). يكون دور البرنامج الحاسوبي في هذه الخطة هو عرض بعض القيم المراد قياسها، أي أن الوسائط الحاسوبية المتعددة وفق هذه الخطة وظفت كأدوات تكنولوجية. وقد تمت كتابة إجراءات تنفيذ كل تجربة على شكل مجموعة من الخطوات بدءاً من تجهيز أدوات التجربة المتصلا بجهاز الحاسوب وضبطها حتى الوصول إلى النتيجة النهائية. ثم تم عرض هذه الخطة على خمسة من أعضاء لجنة التحكيم من المدرسین في قسم الفيزياء في جامعة الحسين بن طلال. وقد قامت المجموعة الثانية بتنفيذ هذه الخطة في صورتها الأولى بمرافقة أسئلة المناقشة التي أُستخدِمت في الخطة السابقة لتحقق هذه الصورة طريقة استخدام الوسائط الحاسوبية المتعددة كأدوات تكنولوجية تراقبها المناقشة. أما الصورة الثانية التي نفذهما المجموعة الأولى فقد استخدمت خطة الوصفات الجاهزة دون مرافقة المناقشة، أي طريقة استخدام الوسائط الحاسوبية المتعددة كأدوات تكنولوجية لا تراقبها المناقشة.

إجراءات الدراسة:

1. تم تنفيذ الدراسة وفقاً للخطوات التالية:

 - تم تدريب الطلبة على استخدام الحاسب والتعامل مع البرنامج الحاسوبي المراق بالتجارب المحسوبة، كما تم تدريب طلبة المجموعتين الثانية والرابعة على العمل وفق دورة (تبدأ، لاحظ، فسر).

 - التأكد من مدى تكاثف أفراد المجموعات التجريبية الأربع في تحصيلهم للمفاهيم الأساسية لحول الاعتبار الوارد في هذه الدراسة، حيث تم الرجوع لنقاط أفراد العينة في مساق الفيزياء العامة (1) والذي يعد مطلباً سابقاً لدراسة مساق الفيزياء العامة العملية (1) الذي تم من خلاله...
تطبيق إجراءات هذه الدراسة، حيث بعد الأخير تطبيقً عملياً للمفاهيم والمبادئ والعلاقاً الوردة
في مساق الفضياء العامة (1).

استخرجت المثوبيات الحسابية، والانحرافات المعيارية لمجموعات عينة الدراسة، لمادة
الفنياء العامة (1)، وبين الجدول (2) البيانات الوصفيّة للنتائج الطلبة في مجموعات عينة
الدراسة :

جدول (2) المتوسيطات الحسابية والانحرافات المعياري لعلامات طلبة مجموعات العينة في مادة الفقريإاء العامة

<table>
<thead>
<tr>
<th>المجموعة</th>
<th>القيمة المتسط</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>الأولى</td>
<td>14.32</td>
<td>14</td>
</tr>
<tr>
<td>الثانية</td>
<td>8.30</td>
<td>14</td>
</tr>
<tr>
<td>الثالثة</td>
<td>12.31</td>
<td>14</td>
</tr>
<tr>
<td>الرابعة</td>
<td>12.09</td>
<td>14</td>
</tr>
<tr>
<td>المجموع</td>
<td>12.05</td>
<td>56</td>
</tr>
</tbody>
</table>

والتأكد فيما إذا كانت هناك فروق بين هذه المتوسيطات الأربعة لمجموعات الدراسة، تم تطبيق
تحليل التباين الأحادي (ANOVA) (الجدول 3).

جدول (3) نتائج تحليل التباين الأحادي لداء المجموعات الأربع في مادة الفقريإاء العامة

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>قيمة الإحصائي</th>
<th>درجات الحرية</th>
<th>مجموع المربعات</th>
<th>能达到</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>0.287</td>
<td>2</td>
<td>184.780</td>
<td>554.339</td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>142.935</td>
<td>52</td>
<td>7432.643</td>
<td></td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td>7986.982</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

يلاحظ من نتائج تحليل التباين الأحادي لأداء المجموعات الأربع في مادة الفقريإاء العامة في
الجدول (3)، عدم وجود فروق ذات دلالة إحصائية بين هذه المتوسيطات، حيث كانت قيمة " ف
تَسَاوِيٌ (1.293) عند مستوى دالّة إحصائيّة (ح = 0.287) مما يعني تكافؤ مجموعات عينة الدراسة في أدائها في مادة الفيزياء العامة، قبل البدء بالتجربة.

البدء يتنفيذ الدراسة اعتباراً من الأسبوع الثامن في الفصل الدراسي الثاني للعام الدراسي 2005-2006، لمدة ست أسابيع بواقع ثلاث ساعات أسبوعياً.

- تم تقسيم الطلبة في كل شعبة دراسية إلى سبع مجموعات تتكون المجموعة الواحدة من طالبين يعملان كفريق واحد، فرقة دراسة المساكن. يحصل كل طالب في بداية الفصل الدراسي على دليل للعمل داخل المختبر ويتكون هذا الدليل من جزءين يوضح الجزء الأول الجانب النظري والمادة العلمية للتجربة المراد تنفيذها، أما الجزء الثاني (Work Sheet) وهو ما يستخدمه الطالب لعمل تقرير علمي للبيانات والنتائج التي حصل عليها، فيتزوي على جداول لتقرير البيانات وكذلك مجموعة من الأسئلة يجب عليها الطالب بعد تنفيذ الدراسة العلمية.

- نفذت المجموعتان الأولى والثانية، اللتان استخدمت الوسائط المتعددة الحاسوبية كأدوات تكنولوجية داخل المختبر، خطّة العمل التقليدية (طريقة الوصقات الجاهزة الموجهة) في حين نفذت المجموعتان الثالثة والرابعة الخبراء وفق خطّة العمل المستدامة لإستراتيجية (تبدأ، لاحظ، فسر) أي استخدام الوسائط المتعددة الحاسوبية كأدوات معرفية.

- بعد انتهاء فترة تطبيق الدراسة، قدم أفراد العينة لاختبار الفهم الفيزيائي، أعقب ذلك استخراج نتائجهم وإجراء المعالجات الإحصائية المناسبة باستخدام البرنامج الإحصائي SPSS.

تقنية الدراسة والمعالجة الإحصائية:

تم استخدام المنهج شبه التجربي في الكشف عن أثر طريقة استخدام الوسائط الحاسوبية المتعددة في فهم مفاهيم الميكانيكا لطلاب المرحلة الجامعية. علماً أن هذه الدراسة استمرت على المتغيرات التالية:

المتغير المستقل: طريقة استخدام الوسائط الحاسوبية المتعددة في مختبر الفيزياء وهذا المتغير

بأربع مسارات.

المتغير التابع: فهم مفاهيم الميكانيكا.

وبذلك يكون تصميم الدراسة هو التصميم الأحادي. وقد استخدم تحليل التباين الأحادي لفحص أثر طريقة استخدام الوسائط الحاسوبية المتعددة في فهم مفاهيم الفيزيائية لدى طلبة المرحلة الجامعية.
وقياس الفروق الثنائية بين المجموعات تم استخدام اختبار توكي (Tukey HSD) حيث يستخدم هذا الاختبار لقياس الفروق الثنائية بين المجموعات فقط في حالة تساوي عدد أفراد المجموعات.

النتائج والمناقشة:

سعت هذه الدراسة إلى تحديد الصورة المناسبة لاستخدام الوسائط الحاسوبية المتعددة في تدريس الفيزياء الجامعية، وذلك من خلال دراسة عدة أنماط لاستخدام الحاسوب في تدريس مفاهيم الفيزياء وتحديد أثرها على مستوى فهم هذه المفاهيم، وبعد إجراء التحليلات الإحصائية الوصفية والاستدلالية المناسبة، وفي ضوء متغيرات الدراسة وأساليبها تم الوصول إلى النتائج التالية:

- تم حساب المتوسطات الحسابية، والانحرافات المعيارية لعلامات طلبة في اختبار البعدي للفهم الفيزيائي لمفاهيم الميكانيكا للمجموعات التجريبية الأربع حسب طريقة استخدام الوسائط الحاسوبية المتعددة. الجدول (4).

جدول (4) المتوسطات الحسابية والانحرافات المعيارية لعلامات طلبة مجموعات العينة على اختبار الفهم الفيزيائي

<table>
<thead>
<tr>
<th>المجموعة</th>
<th>المتوسطات الحسابية</th>
<th>العدد</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>الأولي</td>
<td>13.714</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>الثانية</td>
<td>13.642</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>الثالثة</td>
<td>14.071</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>الرابعة</td>
<td>19.071</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>المجموع</td>
<td>15.125</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

ولمعرفة ما إذا كان هناك فرق ذو دلالة إحصائية في مستوى الفهم الفيزيائي لمفاهيم الميكانيكا، يعذرًا لاختلاف طريقة استخدام الوسائط المتعددة في تدريس هذه المفاهيم، تم استخدام تحليل التباين الأولي (One-way ANOVA).

جدول (5) نتائج التحليل التباين الأولي لأداء المجموعات الأربع على اختبار الفهم الفيزيائي

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>درجات حرية</th>
<th>مجموع الدرجات</th>
<th>مجموع المربعات</th>
<th>مصدر التباين</th>
<th>درجات حرية</th>
<th>مجموع الدرجات</th>
<th>مجموع المربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>الدلالة</td>
<td>0.003</td>
<td>97.399</td>
<td>523.196</td>
<td>الدلالة</td>
<td>0.003</td>
<td>959.929</td>
<td>555.125</td>
</tr>
<tr>
<td>الرتبة</td>
<td>3</td>
<td>18.460</td>
<td>1252.125</td>
<td>الرتبة</td>
<td>3</td>
<td>959.929</td>
<td>555.125</td>
</tr>
<tr>
<td>المجموع</td>
<td>55</td>
<td>1252.125</td>
<td>1252.125</td>
<td>المجموع</td>
<td>55</td>
<td>1252.125</td>
<td>1252.125</td>
</tr>
</tbody>
</table>
وبين الجدول (5) تلخص لنا نتائج تحليل التباين الأحادي لعلامات المجموعات الأربع على اختبار الفهم الفيزيائي، كما تشير نتائج تحليل التباين الأحادي في الجدول (5) إلى وجود فروق ذات دلالة إحصائية (ح = 0.003) لقيمة الإحصائي "ف" التصاعدي (5.276) المتعلقة بتأثير طريقة استخدام الوسائط المتعددة في مستوى الفهم الفيزيائي لمفاهيم الميكيانيكا لدى طلبة المرحلة الجامعية.

ولمعرفة دلالة الفروق، تم إجراء مقارنات محددة بعدها باستخدام اختبار توكي (Tukey) ويوضح الجدول (6) مقارنة متوسطات علامات المجموعات في اختبار الفهم الفيزيائي.

جدول (6) نتائج مقارنة متوسطات علامات الفهم الفيزيائي للمجموعات

<table>
<thead>
<tr>
<th>المقارنات</th>
<th>مستوى الدالة</th>
<th>الأولى</th>
<th>الثانية</th>
<th>الثالثة</th>
<th>الرابعة</th>
</tr>
</thead>
<tbody>
<tr>
<td>الفرق بين المجموعات</td>
<td></td>
<td>0.0714</td>
<td>1.000</td>
<td>0.357</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.996</td>
<td>-0.357</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.009</td>
<td>-5.357</td>
<td>-0.429</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.993</td>
<td></td>
<td></td>
<td>-0.429</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.008</td>
<td>-5.429</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.017</td>
<td></td>
<td>-5.000</td>
<td></td>
</tr>
</tbody>
</table>

تشير نتائج المقارنات بين متوسطات المجموعات التجارية إلى أن المعالجة الرابعة (تدريس مفاهيم الميكيانيكا باستخدام الوسائط الحاسوبية المتعددة ك💡 دورة معرفية ترافقها عملية المناقشة) كانت أثرًا حقيقًا على الفهم الفيزيائي لمفاهيم الميكيانيكا مقارنة بالمجموعات الأخرى.

ويمكن تفسير هذه النتيجة إلى أن توظيف الوسائط الحاسوبية المتعددة ك💡 أدوات معرفية قد استدلت إلى استراتيجية (تنبيه، لاحظ، فسر)، وهو نموذج يقوم على نظرية بناء المعرفة، حيث يتيح للطالب بالإضافة لعملية المناقشة بناء متصور ذهني مرتبط منتظمًا، كما يجعله في موقع المسؤول عن تعلمه، فتحوالي مع المهان دون تحديد بخطوات مكتوبة سهلاً بسيطًا وفقًا خلال العمل في المختبر، ذلك يساعد هذا النموذج البذائي على التنظيم الذاتي للمعلومات والذي يعد أهم العوامل المؤثرة على التعلم المعرفي من خلال التدوين المؤثر المستمر في الترتيب المعرفي وزيادة فهمهم. ورغم أهمية هذا النموذج في تحقيق فهم أفضل، فإن نتائج النموذج (كما تشير النتائج) لا تشير إلى النتائج إلا أن تأثيره الدال إحصائيًا لم يظهر إلا

177
باستخدام المناقشة المراهقة وذلك لأن المناقشة تعمل على إثارة اهتمام التلاميذ بالدروس العملية عن طريق توجيه أنظارهم إلى بعض المشكلات التي تدعو إلى التفكير الإيجابي وإيجاد حلول لها. كما أنها توجه الطالب إلى كيفية وضع خطة لبحث مشكلة ما وتفسير البيانات والخصائص الناجحة.

إن المناقشة المراهقة لاستخدام الوسائط الحاسوبية المتعددة كأدوات معرفية من خلال نموذج (نتبا، لاحظ، فسر) داخل مختبر الفيزياء قد ساعدت الطالب على السير في عملية منظمة ومتسلسلة لتشيد بنائه المعرفي السليم، حيث يتبين الدور الإيجابي للدرس الجامعي في هذه العملية من خلال التوجيه والإرشاد في أثناء عملية المناقشة الفعلية تحقيق فهم أفضل للمفاهيم الفيزيائية.

وعند الرجوع للدراسات السابقة تبين أن هذه النتيجة تنتمي مع ما وصلته له دراسة رسل ودراسة كيرني (Russell et al., 1999) ودراسة بيرنارد (Bernhard, 2003a) من آثار إيجابية لاستخدام الوسائط المتعددة كأدوات معرفية، سواء من خلال نموذج (نتبا، لاحظ، فسر) أو من خلال بيئة نشطة غنية بالوسائط المتعددة التي تمنح الطالب دورا أساسيا في عملية تعلمه. وبخصوص دور المعلم من خلال عملية المناقشة، كانت نتيجة الدراسة تتوافق مع نتيجة دراسة (Bernhard, 2003b) التي بينت أن للمعلم دورا في أثناء عملية التعليم بالوسائط المتعددة في مختبر الفيزياء، وذلك بالتدخل من خلال أدوات توجيهية أثناء عملية المناقشة التي تتم بقيادة وتوجيه المعلم أو المدرس الجامعي وأثر ذلك على قدرة الطلبة على الفهم.

التوصيات:

1. أن تتوافق عملية المناقشة استخدام الوسائط الحاسوبية المتعددة في تدريس المفاهيم الفيزيائية كأدوات معرفية.
2. أن لا يقتصر استخدام الوسائط المتعددة على الجانب التقني فقط بل أن توظف كالأدوات معرفية تساعدها على تنمية قدراته العقلية، وذلك من خلال نموذج (نتبا - لاحظ - فسر) والذي يتوافق مع استخدام الوسائط المتعددة في الرفعة الصفية الموحدة.
3. مع تنوع مجالات الفيزياء، فإن الدراسات اللاحقة يمكن أن تتجه نحو دراسة دور الحاسوب والوسائط المتعددة في فهم مفاهيم فيزيائية أخرى. كما يمكن القيام ببناء
 المناهج التعليمية يتم تطبيقها باستخدام الوسائط المتعددة بالاستعانة من نموذج (تنبأ – لاحظ – فسر) ودراسة آثر ذلك في متغيرات أخرى.

المراجع:
2) يحيى، عبد الحليم (2002). الوسائط المتعددة. القاهرة، دار النشر للجامعات.

Carolina (Session 2380). Article published in the electronic conference proceedings.

